Asymptotic scaling in turbulent pipe flow.
نویسندگان
چکیده
The streamwise velocity component in turbulent pipe flow is assessed to determine whether it exhibits asymptotic behaviour that is indicative of high Reynolds numbers. The asymptotic behaviour of both the mean velocity (in the form of the log law) and that of the second moment of the streamwise component of velocity in the outer and overlap regions is consistent with the development of spectral regions which indicate inertial scaling. It is shown that an 'inertial sublayer' in physical space may be considered as a spatial analogue of the inertial subrange in the velocity spectrum and such behaviour only appears for Reynolds numbers R+>5 x 10(3), approximately, much higher than was generally thought.
منابع مشابه
Transient turbulence in Taylor-Couette flow.
Recent studies have brought into question the view that at sufficiently high Reynolds number turbulence is an asymptotic state. We present direct observation of the decay of turbulent states in Taylor-Couette flow with lifetimes spanning five orders of magnitude. We also show that there is a regime where Taylor-Couette flow shares many of the decay characteristics observed in other shear flows,...
متن کاملThe Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow
In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...
متن کاملScaling laws for fully developed turbulent flow in pipes: discussion of experimental data.
We compare mean velocity profiles measured in turbulent pipe flows (and also in boundary layer flows) with the predictions of a recently proposed scaling law; in particular, we examine the results of the Princeton "super-pipe" experiment and assess their range of validity.
متن کاملDirect Numerical Simulation of Turbulent Heat Transfer in Pipe Flows with various Prandtl Numbers
The direct numerical simulation (DNS) of heat transfer in a fully developed turbulent pipe flow with for various Prandtle numbers are performed to obtain statistical quantities such as turbulent heat flux, and temperature variance. Main emphasis is placed on Prandtl number effects on turbulent heat transfer in pipe flow. Probability density functions and joint probability density functions of v...
متن کاملComparison of thermal scaling properties between turbulent pipe and channel flows via DNS
A systematic comparison of thermal scaling properties of pipe and channel flows is presented. DNS data are used to compute thermal statistics for friction Reynolds numbers of 180 and 395 and Prandtl numbers ranging between 0.025 and 7. A distinct four layer regime for the thermal field is clearly identified in both channel and pipe flows. The analysis reveals that the balance breaking and excha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 365 1852 شماره
صفحات -
تاریخ انتشار 2007